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1. INTRODUCTION

The Karhunen}Loève decomposition (KLD) is a procedure for extracting an empirical
basis (eigenfunctions) for the model decomposition from an ensemble of signals, such as data
obtained in the course of numerical simulations or experiments. Its power lies in the
mathematical properties that suggest that it is the preferred basis to use in various
applications. The most striking feature of the KLD is its optimality: it provides the most
e$cient way of capturing the dominant components of an in"nite-dimensional process with
only a "nite number of &&modes'', and often surprisingly few &&modes'' [1]. This technique has
been applied successfully as a method of model order reduction and reconstruction of the
response of the system in various disciplines, including #uid dynamics [1}3], thermal
analysis [4] and damage detection [5]. In the area of the structural dynamic analysis and
system identi"cation, many researchers from di!erent groups have demonstrated that the
KLD can be used to obtain accurate low-dimensional dynamic models [6}8]. The modes
derived by KLD are optimal in the sense that fewer modes could capture the same amount
of energy among modes compared with modes resulting from the traditional Galerkin or
Rayleigh}Ritz procedure [9]. However, there is lack of a clear description given to show the
relationship between the KLD modes and the normal modes of the vibration. With the
applications of the KLDmethod in structural dynamics, it is worth "nding this relationship.
It has been pointed out in reference [10] that in discrete vibration systems, the eigenvectors
extracted from numerical simulation data by KLD converge to the normal modes of
vibration if the number of data in the ensemble is large enough, and the eigenvalues are
related to the principal moments of inertia. The present paper extends this "nding from the
discrete vibration system to the distributed parameter vibration system, and shows that, for
the distributed parameter vibration system, the eigenfunctions of KLD derived from an
ensemble of numerical simulation data converge to the mode shape of the vibration of the
system.
22-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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2. EIGENFUNCTIONS OF KARHUNEN}LOEE VE DECOMPOSITION

The Karhunen}Loève decomposition is a procedure for extracting an empirical basis
from an ensemble of signals [1]. Assume that the signals are an ensemble of N arbitrarily
shaped functions �u

�
�, where u

�
"u

�
(x) with n"1, 2,2,N and x is the space variables.

The objective is to "nd a single deterministic function which is the most similar to the
members of u

�
(x) on average. In other words, it is the issue of seeking a function �(x) which

maximizes the inner product with the "eld u
�
(x).

Maximize �"

�(�, u
�
)��

(�, �)
, (1)

where � � is the averaging operator and (�, u
�
)"��� (x)u

�
(x) d� is the inner product

de"ned in the function space �.
We de"ne the average

K(x, x�)"�u
�
(x)u

�
(x�)�"

1

N

�
�
���

u
�
(x)u�

�
(x�), (2)

as the two-point correlation function and impose the following normalization condition on
�(x) to make it unique:

(�, �)"1. (3)

It is easy to see that the condition for equation (1) to hold is that �(x) is an eigenfunction
of the following eigenvalue problem:

��

K(x, x�)� (x�) dx�"��(x). (4)

K(x, x�) is a non-negative Hermitain operator and can be solved by a direct method or by
a method of snapshots or strobes [2].

Following the method of snapshots, the eigenfunction � (x) can be represented as the
admixture of snapshots �u

�
� as follows:

�(x)"�
�

�
�
u
�
(x). (5)

Substituting equation (5) into equation (4) yields the followingmatrix eigenvalue problem
that determines the eigenvalues and eigenvectors:

C�"��, (6)

where each entry in C is de"ned as

C
��

"

1

N
(u

�
, u

�
)"

1

N ��

u
�
(x�)u�

�
(x�) dx� (7)

and the set of eigenvector

�"(�
�
, �

�
,2, �

�
). (8)
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The above C
��

is an N�N symmetric, positive-de"nite matrix. The eigenvector of
the matrix eigenvalue problem (6) is then substituted into equation (5) to generate
the eigenfunctions � (x). The order of eigenfunctions �

�
(x), �

�
(x),2,�

�
(x) corresponds to

the order of the magnitude of the eigenvalues �
�
'�

�
'2'�

�
. The symmetric and

non-negative de"niteness of K(x, x�) assure that �
�
*0. Also the eigenfunction �

�
(x)

corresponding to the largest eigenvalue �
�

is the most deterministic of the snapshots
ensemble followed by the eigenfunction �

�
(x), i.e. most of the structural characteristics, or

energy are captured by the subspace associated with the "rst few eigenfunctions [2]. The
eigenfunctions also satisfy the following orthogonality relation:

(�
�
, �

�
)"�

1 (n"k),

0 (nOk).
(9)

Finally, every member of the ensemble could be reproduced by a modal decomposition in
the eigenfunctions � (x),

u
�
(x)"�

�

a
�
�
�
(x). (10)

The above equation (10) is called the Karhunen}Loève decomposition. And the set ��
�
�

is also referred to as the empirical basis.

3. FREE VIBRATION OF CONSERVATIVE DISTRIBUTED PARAMETER SYSTEM

We assume a distributed parameter vibration system executes a synchronous harmonic
motion, and hence it has the form

u(x)"
�
�
�

C
�
cos(	

�
t!�

�
)=

�
(x), (11)

where=
�
is the nth mode, and 	

�
, �

�
are the natural frequency and phase of the nth mode.

In order to demonstrate whether the eigenfunctions of Karhunen}Loève decomposition
converge to the modes of the vibration, we need to check whether the following
approximation is valid, or in other words, whether the eigenfunction of the KLD is the
mode of vibration, i.e.,

��

K(x, x�)=
�
(x�) dx�"��

1

N

�
�
���

u
�
(x)u�

�
(x�)=

�
(x�) dx� approaches �=

�
(x), (12)

where N is the total number of the snapshots. Using equation (11), the left-hand side of
equation (12) may be rewritten as follows:

1

N

�
�
���
��

�

C
�
cos(	

�
t
�
!�

�
)=

�
(x)� ����

�

C
�
cos(	

�
t
�
!�

�
)=

�
(x�)�=�

(x�) dx�. (13)

Consider the orthogonal property of the vibration modes,

��

=
�
(x)=

�
(x) dx�"A

�


��
. (14)
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Equation (13) becomes

1

N

�
�
���
��

�

C
�
cos(	

�
t
�
!�

�
)=

�
(x)�A�

C
�
cos(	

�
t
�
!�

�
). (15)

If the frequencies and phases of the vibration modes are distinct, and the total number of
the snapshots N approaches in"nity, then equation (15) becomes

lim
���

1

N

�
�
���
��

�

C
�
cos(	

�
t
�
!�

�
)=

�
(x)�A�

C
�
cos(	

�
t
�
!�

�
)"A

�
C�

�
=

�
(x). (16)

Hence, it is proved that=
�
(x) is an eigenfunction of the following eigenvalue problem:

lim
��� ��

K(x, x�)=
�
(x) dx�"A

�
C�

�
=

�
(x)"�=

�
(x). (17)

In other words, the eigenfunctions of the KLD converge to the modes of vibration of
a distributed parameter system when the total size of the snapshots is large enough.

4. EXAMPLES AND DISCUSSIONS

A string "xed at both ends is a problem for consideration in vibration. By considering
a #exible string of mass � per unit length which is stretched under tension ¹ and by
assuming the lateral de#ection u(x, t) of the string to be small, the equation for the lateral
de#ection in the general case of free vibration initiated in any manner can be obtained as
follows [11]:

u (x, t)"
�
�
���

(C
�
sin	

�
t#D

�
cos	

�
t) sin

n�x
l

, =
�
"sin

n�x
l

, 	
�
"n��

¹

�l�
(18)

where the normal mode =
�
is sinusoidal with the distribution sin n�x/l, 	

�
is the natural

frequency of the nth mode and the constantsC
�
and D

�
in equation (18) can be valued to the

initial and the boundary conditions.
We assume the string is displaced into a shape

u (x, 0)"!

x

l
(l!x)e���� (19)

and released, thus C
�
and D

�
of equation (18) become

C
�
"0,

D
�
"!2l (!8e�� cos(n�)n�#4n�!4n���)/(1#n���)� (n"1, 2,2). (20)

In the following numerical computation tests to demonstrate the relationship between
the eigenfunctions of KLD and vibration modes, snapshots are obtained from the
numerical solution of equation (18) where we take the number of modes as n"20. The
eigenfunctions and eigenvalues of the KLD for various ensemble of snapshots are obtained
by making use of equations (4) and (5). In the "rst computation test, eigenfunctions and



Figure 1. The "rst eigenfunction and the "rst mode of the vibration. **, vibration mode; } ) } ) �} ) } ) }, 30
snapshots; - - - -�- - - - -, 50 snapshots.

Figure 2. The second eigenfunction and the second mode of the vibration.**, vibration mode; } )} ) �} )} ) },
30 snapshots; - - - -�- - - - -, 50 snapshots.
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eigenvalues are obtained by applying the KLD to a number of ensembles of snapshots
which are evenly taken at the "xed time interval within the time period of

t
�
"2�/	

�
"2��l�/¹ (one fundamental period). Figures 1}4 show the "rst, second, 10th

and 20th orthonormal eigenfunctions corresponding to the order of magnitude of the
respective eigenvalues �

�
, �

�
, �

�	
and �

�	
when the number of the snapshots is 30 and 50

respectively. We de"ne the mean square error between the eigenfunction of KLD and the
corresponding vibration mode as follows:

MSE"

1

l �
�

(�
�
!=

�
)�dx. (21)



Figure 3. The 10th eigenfunction and the 10th mode of the vibration. **, vibration mode; } ) } ) �} ) } ) }, 30
snapshots; - - - -�- - - - -, 50 snapshots.

Figure 4. The 20th eigenfunction and the 20th mode of the vibration. **, vibration mode; } ) } ) �} ) } ) }, 30
snapshots; - - - -�- - - - -, 50 snapshots.
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Figure 5 shows the MSE for "rst, second, 10th and 20th orthonormal eigenfunctions
compared with the corresponding order of the vibration modes. The error decreases with
increasing number of snapshots for the higher 10th and 20th modes. It is also noted in
Figures 4 and 5 that the 20th eigenfunction does not converge to the corresponding 20th
vibration mode when the number of the snapshots is taken as 30. However, all the
eigenfunctions can converge to the corresponding modes of vibration almost exactly when
the number of the snapshots is 50. Table 1 shows that the "rst, second and third eigenvalues
of KLD converge quite well as the number of the snapshot increases from 5 to 50. In the
second computation test, eigenfunctions and the eigenvalues are obtained from four sets of
ensemble of snapshots, each set has the same number of snapshotsN"50 but the sampling



Figure 5. The mean square error between eigenfunctions and the corresponding modes of the vibration.
} ) } ) �} ) } ) }, 30 snapshots; - - - -�- - - - -, 50 snapshots.

TABLE 1

¹he ,rst three eigenvalues versus the number of snapshots

Eigenvalues

Number of snapshots �
�

�
�

�
�

5 0)0063402695 0)0002400612 0)0000022490
10 0)0063265951 0)0002197678 0)0000217581
20 0)0063347454 0)0002208136 0)0000205208
30 0)0063347450 0)0002208131 0)0000205201
50 0)0063347450 0)0002208131 0)0000205201
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rate and the length of time period for sampling are di!erent. The snapshots in the "rst set of
ensemble are taken at "xed time interval within the time period of one fundamental period
t"t

�
(sampling rate 
"t

�
/50), the snapshots in the second set are taken at "xed time

interval within 1)6 times of fundamental periods t"1)6t
�
(sampling rate 
"1)6t

�
/50), the

snapshots in the third set are taken at "xed time interval within 2 times of fundamental
periods t"2t

�
(sampling rate 
"2t

�
/50) and the snapshots in the fourth set are taken at

various time intervals within a fundamental period t"t
�
, i.e., in the "rst half t

�
, 30

snapshots are taken at one "xed time interval while in the second half t
�
, 20 snapshots are

taken at another "xed time interval (sampling rate 
"t
�
/60 and 
"t

�
/40 respectively).

Figure 6 shows the 10th eigenfunction obtained by KLD from these four sets of ensemble
and the corresponding 10th mode of the vibration. The respective MSE is shown in
Figure 7. Again, the second computation results shown in Figures 6 and 7 indicate that the
eigenfunctions agree well with the system vibration mode, the error increases with
increasing sampling rate or increasing length of time period if the number of the sampling
(snapshots) is kept the same. It is also noted from the results that there is no signi"cant
di!erence between the eigenfunctions obtained from the "rst set and fourth set of ensemble,
i.e., the results do not show any signi"cant di!erence in evenly or unevenly sampling,



Figure 6. The 10th eigenfunction and the 10h mode of the vibration with various sampling rates and length of
time periods.**, vibration mode; �, t"t

�
("rst set); �, t"1)6t

�
(second set); � , t"2t

�
(third set); #, t"t

�
(fourth set).

Figure 7. The mean square error between the 10th eigenfunction and the 10th mode of the vibration with
various sampling rates and length of time periods.
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provided it is sampled within the same length of time period and with the same number of
sampling. This is probably due to the fact that we only treat the ensemble of the numerical
data obtained from the steady-state response rather than the transient response of the
system in this paper.

5. CONCLUSION

The relationship between the eigenfunctions extracted by Karhunen}Loève
decomposition from an ensemble of numerical simulation data and the corresponding
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modes of the vibration of the distributed parameter system has been established. The
eigenfunctions agree well with modes of vibration if the number of sampling or snapshots is
large enough. This property can be used to obtain the modes of the vibration when the
numerical simulation data are obtained from a distributed parameter system. Future
research would be to use the Karhunen}Loève decomposition for signals with
noise-injected data, the non-linear distributed parameter vibration system, and the system
with generalized damping.
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